Dye-sensitized solar cells (DSSCs) are regarded as one of the most promising solar cells amongst third-generation photovoltaic technologies, particularly due to their low cost, easy preparation, and minor environmental impact compared to earlier-generation devices. However, they have been challenged by thermal energy losses and low cell efficiencies.This work examined the incorporation of zirconium (Zr) into the crystal lattice of titania nanoparticles (nTiO2) for subsequent fabrication into the photo anode of the DSSCs. The results showed that Zr doping of nTiO2 inhibited the anatase-rutile phase transition. Higher calcination temperatures gave increased titania crystallinity, and stabilized the nTiO2 aggregate pore structure and specific surface area, consequently improving the DSSC device performance. A doping concentration of 5 mol % Zr into the nTiO2 demonstrated the best resistance against thermal degradation, achieving an optimized retention of specific surface area. Solar simulation confirmed the results, indicating better heat stability, although lowering the DSSC efficiencies.