Paeoniflorin has anti-inflammatory, anti-allergy, immune regulatory and pain-relieving effects, amongst other roles. However, the mechanisms underlying the protective effects of paeoniflorin on rheumatoid arthritis (RA) remain under investigation; the objective of the current study was to evaluate these protective effects in the context of an RA model. Rats were randomly divided into 5 groups, as follows: The control group, the RA rat model group, and the paeoniflorin groups, in which paeoniflorin was administered at concentrations of 5, 10 and 20 mg/kg for 3 weeks. The pain thresholds and arthritic symptoms of the RA rats were measured. Oxidative stress and inflammatory cytokines were also analyzed and western blot analysis was used to evaluate cyclooxygenase-2 (COX-2) protein expression levels. Paeoniflorin significantly increased the pain threshold and decreased the arthritic symptoms in the RA rat model. Notably, paeoniflorin reduced the malondialdehyde concentration and increased the activity of superoxide dismutase, catalase and glutathione peroxidase. Furthermore, paeoniflorin attenuated the activity of nuclear factor-κB p65 unit, tumor necrosis factor-α, interleukin (IL)-1β and IL-6, and reduced the COX-2 protein expression level. The present study indicates that paeoniflorin ameliorates disease in rat models of RA through oxidative stress, inflammation and alterations to COX-2 expression.