2022
DOI: 10.1109/tcsii.2021.3093571
|View full text |Cite
|
Sign up to set email alerts
|

Effective Gain Analysis and Statistic Based Calibration for Ring Amplifier With Robustness to PVT Variation

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2

Citation Types

0
4
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
5
1

Relationship

1
5

Authors

Journals

citations
Cited by 6 publications
(4 citation statements)
references
References 20 publications
0
4
0
Order By: Relevance
“…More importantly, ringamps are more suitable for fine CMOS processes and have application scenarios in various types of ADCs due to the versatility of their structures. In the last decade, many ringamp-based ADC works [24,[29][30][31][32][33][34][35][36][37][38][39] have appeared. Essentially, there are two different directions of the application, one for high resolution (signal-to-noise-and-distortion-ratio (SNDR) ≥ 70 dB) and the other for high speed (sampling rate fs ≥ 500 MHz), such as the dual-deadzone RAMP-based two-step SAR ADC [34], which achieves the highest SNDR for a ringampbased high-resolution ADC, while [33] used a dead zone degeneration technique to realize the fastest sampling rate (fs = 1 GHz) for single-channel implementation.…”
Section: Ring Amplifier Reviewmentioning
confidence: 99%
See 3 more Smart Citations
“…More importantly, ringamps are more suitable for fine CMOS processes and have application scenarios in various types of ADCs due to the versatility of their structures. In the last decade, many ringamp-based ADC works [24,[29][30][31][32][33][34][35][36][37][38][39] have appeared. Essentially, there are two different directions of the application, one for high resolution (signal-to-noise-and-distortion-ratio (SNDR) ≥ 70 dB) and the other for high speed (sampling rate fs ≥ 500 MHz), such as the dual-deadzone RAMP-based two-step SAR ADC [34], which achieves the highest SNDR for a ringampbased high-resolution ADC, while [33] used a dead zone degeneration technique to realize the fastest sampling rate (fs = 1 GHz) for single-channel implementation.…”
Section: Ring Amplifier Reviewmentioning
confidence: 99%
“…In this work, we have chosen the LVT transistor as the third stage, to achieve high bandwidth. We have improved the bias-enhanced ringamp with PVT compensation and fast-start circuits based on our previous work in [35]. Figure 2b shows the conceptual bode plot of this self-biased and bias-enhanced ringamp.…”
Section: Ring Amplifier Reviewmentioning
confidence: 99%
See 2 more Smart Citations