2020
DOI: 10.1109/access.2020.2986943
|View full text |Cite
|
Sign up to set email alerts
|

Effective Lightweight Learning-to-Rank Method Using Unified Term Impacts

Abstract: In this study, we propose and evaluate a novel learning-to-rank (L2R) approach that produces results on par with those of the state-of-the-art L2R methods while being computationally effective. We start by presenting a modified gradient boosted regression tree algorithm to generate unified term impact (UTI) values at indexing time. Each unified term impact replaces several features with a single value in the document index, thereby reducing the effort to compute the document scores at query processing time bec… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
5
0
3

Year Published

2020
2020
2022
2022

Publication Types

Select...
2
1
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(8 citation statements)
references
References 43 publications
0
5
0
3
Order By: Relevance
“…In modern search systems, a two-level relevance calculation process is often used [26,27]. Two ranking mechanisms are applied one after another.…”
Section: Relevance Calculation Methodsmentioning
confidence: 99%
See 2 more Smart Citations
“…In modern search systems, a two-level relevance calculation process is often used [26,27]. Two ranking mechanisms are applied one after another.…”
Section: Relevance Calculation Methodsmentioning
confidence: 99%
“…Назовем данный метод R IntervalOpt . В современных системах часто применяется двухуровневый расчет релевантности [26,27]. Последовательно применяются два механизма ранжирования.…”
Section: число вхожденийunclassified
See 1 more Smart Citation
“…Além disso, sistemas de busca disponíveis no mercado levam muito tempo para incorporar melhorias propostas na literatura, em parte porque algumas delas podem não beneficiar a todos os tipos de empresas que usam tais sistemas ou ainda podem até prejudicar parte de seus usuários. Exemplos de melhorias que podem impactar muito sistemas de busca como o da Jusbrasil, mesmo que não impactem tanto a outros tipos de sistemas de busca incluem novos métodos de poda e processamento de consultas [Rossi et al 2013, Daoud et al 2017, Petri et al 2019] e novas técnicas para o desenvolvimento de sistemas de busca eficientes que usem aprendizagem de máquina [Lucchese et al 2018, Silva et al 2020].…”
Section: Desenvolvimento De Sistemas De Busca Eficazes E Eficientesunclassified
“…FAIR-PG-Rank recommends items via a policy-gradient approach which could satisfy fairness of exposure constraints with respect to items [ 31 ]. A similar idea in the article is generating unified term impact (UTI) during the indexing time and combining into a hybrid model to improve the accuracy [ 32 ]. Since the relationship between study performance and exam results is much complicated, article [ 33 ] finds the correspondence of input values and predicts targets which is not a one-to-one relation, treats the classification task as a fuzzy geometrical problem, and proposes a fuzzy similarity approach to solve the problem [ 34 , 35 ].…”
Section: Related Workmentioning
confidence: 99%