A cylindrical resonator was employed to measure the sound speeds in gaseous CF 4 and C 2 F 6 . The CF 4 measurements span the temperature range 300 to 475 K, while the C 2 F6 measurements range from 210 to 475 K. For both gases, the pressure range was 0.1 MPa to the lesser of 1.5 MPa or 80% of the sample's vapor pressure. Typically, the speeds of sound have a relative uncertainty of less than 0.01 % and the ideal-gas heat capacities derived from them have a relative uncertainty of less than 0 1%. The heat capacities agree with those determined from spectroscopic data. The sound speeds were fitted with the virial equation of state to obtain the temperature-dependent density virial coefficients. Two models for the virial coefficients were employed, one based on square-well potentials and the second based on a Kihara spherical-core potential. The resulting virial equations reproduce the sound-speed measurements to within 0.005 % and yield densities with relative uncertainties of 0.1% or less. The viscosity calculated from the Kihara potential is 2 to 11% less than the measured viscosity.