Integrated pest management (IPM) has greatly influenced farming in the past decades. Even though it has been effective, its adoption has not been as large as anticipated. Operational issues regarding crop monitoring are among the reasons for the lack of adoption of the IPM philosophy because control decisions cannot be made unless the crop is effectively and constantly monitored. In this way, recent technologies can provide unique information about plants affected by insects. Such information can be very precise and timely, especially with the use of real-time data to allow decision-making for pest control that can prevent local infestation of insects from spreading to the whole field. Some of the digital tools that are commercially available for growers include drones, automated traps, and satellites. In the future, a variety of other technologies, such as autonomous robots, could be widely available. While the traditional IPM approach is generally carried out with control solutions being delivered throughout the whole field, new approaches involving digital technologies will need to consider adaptations in the concepts of economic thresholds, sampling, population forecast, injury identification, and ultimately the localized use of control tactics. Therefore, in this paper, we reviewed how the traditional IPM concepts could be adapted, considering this ongoing digital transformation in agriculture.