In this study, an oxygen-releasing and phosphorus-controlling agent (ORPC) consisting of calcium peroxide (CaO2), bentonite, cement, stearic acid (SA), citric acid (CA) and fine sand was synthesized successfully and used to purify rich-phosphorus river water. The removal of phosphorus using ORPC was studied in actual river water and the results found that over 75.0% phosphorus was removed by adding ORPC at 30 mL h−1 flow rate in the initial phosphorus concentrations of 0.76 mg L−1. The ORPC was further used to evaluate the changes of aluminum phosphate (Al-P), ferric phosphate (Fe-P) and calcium phosphate (Ca-P) in sediment. Fe-P, Al-P, and Ca-P in the sediment increased from 0.14, 0.196, and 1.63 mg g−1 to 0.159, 0.372, and 2.74 mg g−1 respectively within 28 days, indicating that the total dissolved phosphorus in the overlying water could be adsorbed by ORPC and further transformed into Al-P, Ca-P, and Fe-P in the sediment, thus inhibiting the release of endogenous phosphorus in sediment to water. Besides, the performance of ORPC with various contents of SA and CaO2 was investigated. In summary, ORPC can be employed to adsorb phosphorus in water and prevent phosphorus release from sediment, therefore achieving the purpose of controlling phosphorus and maintaining DO at a reasonable level.