Calcineurin inhibitors (CNI) and steroids are known to promote insulin resistance, and their avoidance after islet transplantation is preferred from a metabolic standpoint. Belatacept, a B7-specific mediator of costimulation blockade (CoB), is clinically indicated as a CNI alternative in renal transplantation, and we have endeavored to develop a clinically translatable, belatacept-based regimen that could obviate the need for both CNIs and steroids. Based on the known synergy between CoB and mTOR inhibition, we studied rhesus monkeys undergoing MHC-mismatched islet allotransplants treated with belatacept and the mTOR inhibitor, sirolimus. To extend prior work on CoB-resistant rejection, some animals also received CD2 blockade with alefacept (LFA3-Ig). Nine rhesus macaques were rendered diabetic with streptozotocin and underwent islet allotransplantation. All received belatacept and sirolimus; six also received alefacept. Belatacept and sirolimus significantly prolonged rejection-free graft survival (median 225 days compared to 8 days in controls receiving basiliximab and sirolimus; p=0.022). The addition of alefacept provided no additional survival benefit, but was associated with Cytomegalovirus reactivation in 4/6 animals. No recipients produced donor-specific alloantibodies. The combination of belatacept and sirolimus successfully prevents islet allograft survival in rhesus monkeys, but induction with alefacept provides no survival benefit and increases the risk of viral reactivation.