Background This study evaluated the effects of concurrent isolated training (T) or training combined with the antioxidant N-acetylcysteine (NAC) on cardiac remodeling and oxidative stress in spontaneously hypertensive rats (SHR).Methods Six-month-old male SHR were divided into sedentary (S, n = 12), concurrent training (T, n = 13), sedentary supplemented with NAC (SNAC, n = 13), and concurrent training with NAC supplementation (TNAC, n = 14) groups. T and TNAC rats were trained three times a week on a treadmill and ladder; NAC supplemented groups received 120 mg/kg/day NAC in rat chow for eight weeks. Myocardial antioxidant enzyme activity and lipid hydroperoxide concentration were assessed by spectrophotometry. Gene expression of NADPH oxidase subunits Nox2, Nox4, p22 phox, and p47 phox was evaluated by real time RT-PCR. Statistical analysis was performed using ANOVA and Bonferroni or Kruskal-Wallis and Dunn.
ResultsEchocardiogram showed concentric remodeling in TNAC, characterized by increased relative wall thickness (S 0.40 ± 0.04; T 0.39 ± 0.03; SNAC 0.40 ± 0.04; TNAC 0.43 ± 0.04 *; * p < 0.05 vs T and SNAC) and diastolic posterior wall thickness (S 1.50 ± 0.12; T 1.52 ± 0.10; SNAC 1.56 ± 0.12; TNAC 1.62 ± 0.14 * mm; * p < 0.05 vs T), with improved contractile function (posterior wall shortening velocity: S 39.4 ± 5.01; T 36.4 ± 2.96; SNAC 39.7 ± 3.44; TNAC 41.6 ± 3.57 * mm/s; * p < 0.05 vs T). Myocardial lipid hydroperoxide concentration was lower in NAC treated groups (S 210 ± 48; T 182 ± 43; SNAC 159 ± 33 *; TNAC 110 ± 23 * # nmol/g tissue; * p < 0.05 vs S, # p < 0.05 vs T and SNAC). Nox 2 and p22 phox expression was higher and p47 phox lower in T than S [S 1.37 (0.66-1.66); T 0.78 (0.61-1.04) *; SNAC 1.07 (1.01-1.38); TNAC 1.06 (1.01-1.15) arbitrary units; * p < 0.05 vs S]. NADPH oxidase subunits did not differ between TNAC, SNAC, and S groups.