Pulmonary arterial hypertension (PAH) is a chronic disease which causes overload to the right ventricle. The effect of preventive training on cardiac remodelling in this condition is still unknown. This study aimed to evaluate the influence of preventive training on hypertrophy, heart function and gene expression of calcium transport proteins in rats with monocrotaline-induced PAH. Thirty-two male Wistar rats were randomly divided into four groups: S, sedentary control; T, trained control; SM, sedentary monocrotaline; and TM, trained monocrotaline. The preventive training protocol was performed on a treadmill for 13 weeks, five times/week. The first two weeks were adopted for adaptation to training with gradual increases in speed/time. The speed of the physical training from the third to tenth weeks was gradually increased from 0.9 to 1.1 km/h for 60 min. Next, monocrotaline was applied (60 mg/kg) to induce PAH and lactate threshold analysis performed to determine the training speeds. The training speed of the TM group in the following two weeks was 0.8 km/h for 60 min and the T = 0.9 km/h for 60 min; in the final two weeks, both groups trained at the same speed and duration 0.9 km/h, 60 min. Cardiac function was assessed through echocardiography, ventricular hypertrophy through histomorphometric analysis and gene expression through RT-qPCR. Right cardiac function assessed through the peak flow velocity was SM = 75.5 cm/s vs. TM = 92.0 cm/s (P = 0.001), and ventricular hypertrophy was SM = 106.4 μm² vs. TM = 77.7 μm² (P = 0.004). There was a decrease in the gene expression of ryanodine S = 1.12 au vs. SM = 0.60 au (P = 0.02) without alterations due to training. Thus, we conclude that prior physical training exerts a cardioprotective effect on the right ventricle in the monocrotaline rat model.
BackgroundRight-sided heart failure has high morbidity and mortality, and may be caused by pulmonary arterial hypertension. Fractal dimension is a differentiated and innovative method used in histological evaluations that allows the characterization of irregular and complex structures and the quantification of structural tissue changes.ObjectiveTo assess the use of fractal dimension in cardiomyocytes of rats with monocrotaline-induced pulmonary arterial hypertension, in addition to providing histological and functional analysis.MethodsMale Wistar rats were divided into 2 groups: control (C; n = 8) and monocrotaline-induced pulmonary arterial hypertension (M; n = 8). Five weeks after pulmonary arterial hypertension induction with monocrotaline, echocardiography was performed and the animals were euthanized. The heart was dissected, the ventricles weighed to assess anatomical parameters, and histological slides were prepared and stained with hematoxylin/eosin for fractal dimension analysis, performed using box-counting method. Data normality was tested (Shapiro-Wilk test), and the groups were compared with non-paired Student t test or Mann Whitney test (p < 0.05).ResultsHigher fractal dimension values were observed in group M as compared to group C (1.39 ± 0.05 vs. 1.37 ± 0.04; p < 0.05). Echocardiography showed lower pulmonary artery flow velocity, pulmonary acceleration time and ejection time values in group M, suggesting function worsening in those animals.ConclusionThe changes observed confirm pulmonary-arterial-hypertension-induced cardiac dysfunction, and point to fractal dimension as an effective method to evaluate cardiac morphological changes induced by ventricular dysfunction.
Introdução: A Paralisia Cerebral (PC) pode estar associada á incontinência urinária (IU), que pode ser decorrente de alterações neurológicas. Objetivo: Avaliar eficácia da eletroestimulação transcutânea (TENS) do nervo tibial posterior na qualidade de vida de mulheres com IU e PC. Método: Relato de caso com duas mulheres (28 e 36 anos). Avaliado o tipo de disfunção urinária e questionário King’s Health Questionnaire (KHQ). Realizadas 20 sessões de eletroestimulação com frequência de 60 Hz, largura de pulso 200 µs, frequência da corrente de 01 Hz. A intensidade foi estabelecida de acordo com cada paciente. Resultados: Ambas diminuíram o número de idas ao banheiro e trocas dos forros. No KHQ, a paciente 1 melhorou nos domínios impacto da incontinência, limitação das tarefas, limitação física/social e medidas de segurança. Já a paciente 2, nos domínios limitações das tarefas, relações pessoais e sono/energia. Conclusão: A TENS melhorou a qualidade de vida destas mulheres.
To gain insight on the impact of preventive exercise during pulmonary arterial hypertension (PAH), we evaluated the gene expression of myosins and gene-encoding proteins associated with the extracellular matrix remodeling of right hypertrophied ventricles. We used 32 male Wistar rats, separated in four groups: Sedentary Control (S; n=8); Control with Training (T; n=8); Sedentary with Pulmonary Arterial Hypertension (SPAH; n=8); and Pulmonary Arterial Hypertension with Training (TPAH; n=8). The rats trained for thirteen weeks on a treadmill. They had two weeks of adaptation training. The PAH was induced by application of monocrotaline 60 mg/kg. Consequential right ventricular dysfunction was observed after the 10th week of training. Rats in the control group received saline application. At the end of the 13th week, echocardiography analysis confirmed cardiac dysfunction. Collagen content and organization was assessed through picrosirius red staining and fractal dimension (FD) analysis, respectively. Transcript abundance was estimated through reverse transcription-quantitative PCR (RT-qPCR). Cardiac dysfunction was confirmed by the reduction in maximum pulmonary artery velocity and pulmonary artery acceleration time. Through histomorphometric assessment, we found no differences in the interstitial collagen FD between groups. Regarding gene expression, myh7 gene expression was upregulated in the TPAH group. However, this did not occur with the S group. PAH also increased the mRNA abundance of col1a1 in the SPAH and TPAH groups. Moreover, the TPAH group showed a higher abundance of this gene when compared to the S group. With these findings, we concluded that preventive exercise had a positive impact on compensated hypertrophy during pulmonary hypertension. This can be explained in part by the modulation of the extracellular matrix and myosin gene expression in trained rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.