In this study, a thorough investigation of the microstructures and tensile properties of 316L stainless steel fabricated via laser powder bed fusion (L-PBF) was done. 316L stainless steel specimens with two different thicknesses of 1.5 mm and 4.0 mm fabricated under similar conditions were utilized. Microstructural characterization was performed using optical microscopy (OM) and scanning electron microscopy (SEM) equipped with electron backscatter diffraction (EBSD). Melt pools and cellular structures were observed using OM, whereas EBSD was utilized to obtain the grain size, grain boundary characteristics, and crystallographic texture. The 1.5 mm thick sample demonstrated a yield strength (YS) of 538.42 MPa, ultimate tensile strength (UTS) of 606.47 MPa, and elongation to failure of 69.88%, whereas the 4.0 mm thick sample had a YS of 551.21 MPa, UTS of 619.58 MPa, and elongation to failure of 73.66%. These results demonstrated a slight decrease in mechanical properties with decreasing thickness, with a 2.4% reduction in YS, 2.1% reduction in UTS, and 5.8% reduction in elongation to failure. In addition to other microstructural features, the cellular structures were observed to be the major contributors to the high mechanical properties. Using the inverse pole figure (IPF) maps, both thicknesses depicted a crystallographic texture of {001} <101> in their as-built state. However, when subjected to tensile loads, texture transitions to {111} <001> and {111} <011> were observed for the 1.5 mm and 4.0 mm samples, respectively. Additionally, EBSD analysis revealed the pre-existence of high-density dislocation networks and a high fraction of low-angle grain boundaries. Interestingly, twinning was observed, suggesting that the plastic deformation occurred through dislocation gliding and deformation twinning.