Consistent with the context-dependent memory literature, previous research suggests that when the same frequency of neural oscillations is reinstated between memory encoding and retrieval, engram reactivation is facilitated, and thus declarative memory recall is enhanced. Importantly, engram reactivation is also fundamental for the redistribution process that underlies sleep-dependent memory consolidation. Therefore, the current study investigated whether reinstating frequency-specific oscillatory activity between encoding and sleep would facilitate the engram reactivation implicated in sleep-dependent memory consolidation, and thus enhance post-sleep declarative memory performance. Transcranial alternating current stimulation (tACS) was administered to the left dorsolateral prefrontal cortex (DLPFC) of human participants during a declarative memory task. Participants received 60 Hz of stimulation during encoding, and 60 Hz, 90 Hz, or sham stimulation during post-learning slow-wave sleep (SWS) or rapid eye-movement (REM) sleep. In immediate and delayed free recall sessions, declarative memory performance was significantly enhanced if participants had received the same frequency of stimulation during encoding and SWS compared to any other stimulation condition. This finding supports a novel theoretical proposal, which assumes that an intrinsic neurobiological mechanism for coordinating frequency-specific oscillatory activity, during SWS, underlies sleep-dependent declarative memory consolidation.