Cancer survival times have increased annually owing to advances in early detection and treatment that prolong patient survival. However, increasing survivorship has underscored the observation that cancer survivors develop age-related diseases prematurely, which cause significant morbidity, health expenditures, and mortality. Many cancer survivors have been exposed to chemotherapy, radiotherapy, or both; despite eradicating cancer cells, these therapies also damage normal cells to accelerate biologic aging, such that a discrepancy exists between their biologic and chronologic age (1). Considerable data exist regarding the phenotypes of accelerated aging. However, mechanical and molecular uncertainties have limited the study of these manifestations in a clinical context. Our Review discusses accelerated aging phenotypes in cancer survivors and the cellular mechanisms underpinning these phenomena. We then discuss the translational evidence on how accelerated aging phenotypes, mainly related to senescence, are being targeted while highlighting areas of uncertainty for future research to address.