For the mechanical system without oil lubrication, the impact or collision often occurs in the joint clearance, such as the variable stator vane (VSV) mechanism. In the dry friction joint, the damping of the contact bodies has a significant effect on the simulation stability of the tribo-dynamics calculation process. In order to investigate the effect of contact damping and joint clearance on the VSV mechanism performance, this paper proposes a damping contact model on rough surfaces to calculate the clearance contact force between the trunnion and bushing, and the spatial tribo-dynamics of VSV is established by combining this model with spatial dynamics. In addition, the effect of clearance size on the tribo-dynamics is analyzed. The results show that the contact damping must be included in the contact force model of dry friction joints, otherwise the calculation process will oscillate or even not converge, but the contact damping effect can be ignored in the case of lubricating oil. The movement of the trunnion in the bushing is affected by the adjustment drive and the aerodynamic drag, which leads to the wear concentrated on the edge of the bushing. The clearance size affects the distribution of the damping forces and the rigid forces in the contact process, and the damping forces ensure the stability of the VSV tribo-dynamics simulation process. Moreover, with the increase of clearance, the adjustment accuracy of the VSV mechanism is reduced, and the wear of the bushing is intensified.