One-Dimensional Turbulence (ODT) is a stochastic model for turbulent flow simulation. In an atmospheric context, it is analogous to single-column modeling (SCM) in that it lives on a 1D spatial domain, but different in that it time advances individual flow realizations rather than ensemble-averaged quantities. The lack of averaging enables a physically sound multiscale treatment, which is useful for resolving sporadic localized phenomena, as seen in stably stratified regimes, and sharp interfaces, as observed where a convective layer encounters a stable overlying zone. In such flows, the relevant scale range is so large that it is beneficial to enhance model performance by introducing an adaptive mesh. An adaptive-mesh algorithm that provides the desired performance characteristics is described and demonstrated, and its implications for the ODT advancement scheme are explained.