Highly c-axis oriented (Bi3.25Nd0.65Eu0.10)Ti3O12 (BNEuT) thin films were deposited on the Pt(100)/MgO(100) substrates by high-temperature sputtering. The substrate temperature was varied from 550 °C to 650 °C to examine its effect on the structural, dielectric, ferroelectric, and piezoelectric characteristics of the films, and consequently find the optimal substrate temperature for heteroepitaxial growth of BNEuT thin films. All the films deposited at 580 °C–650 °C exhibited a high degree of c-axis orientation [α(00l)] of ≥97%. All the films grown heteroepitaxially on Pt(100)/MgO(100) substrates was rotated by ±45° with respect to the underlying substrates and had a mainly upward polarization, based on data observed by piezoresponse force microscopy. Judging from the structural, dielectric, ferroelectric, and piezoelectric characteristics, it is shown that the optimal substrate temperature for heteroepitaxial growth of BNEuT films with a high α(00l) of >97% and a comparatively large remanent polarization of 2.0 μC cm−2 is 580 °C.