The potential release of nutrients from animal farms into soil, water and the atmosphere is a major concern in agronomy. Farm gate balances are widely utilised to validate the compatibility of a farming system to the surrounding environment, although they do not reveal the internal nutrient flow as influenced by production intensity and hence might mask local and spatial nutrient surpluses or deficiencies. In a three years experiment on Rengen Research Station (Eifel Mountains) of the University of Bonn (Germany) we examined the entire nutrient cycle of two suckler farm systems without (extensive, system ''A'') and with (intensive, system ''B'') nutrient input and with 20 suckler cows on 19 hectare each. Stall and grassland nutrient balance sheets give insight into sources of nutrient surpluses and losses in the farm compartments. The annual budgets of N in system ''A'' were nearly balanced ( À 18 to 15 kg N ha À1 yr À1 ) compared to system ''B'' which calculated 81-120 kg N ha À1 yr À1 surplus due to considerable N input with forage and higher dry matter contribution of white clover leading to higher annual N2 fixation. The maximum of total annual nutrient flow within the entire systems was 388, 42 and 317 kg ha À1 yr À1 with N, P, and K, respectively. Most of these nutrients circulated with forage and excreta on the pastures. This led to considerable losses mainly of nitrogen (44-50 kg N ha À1 yr À1 ) even in the extensive system. The intake, excretion and resulting losses of N were mainly determined by the allowance of N rich pasture forage and was mostly independent from nutrient input. Compared to the grazing season, stall balances were similar in both systems and all years and revealed very low surpluses with all nutrients. The authors deduce that internal nutrient flow analyses should be added to conventional balance sheets, including a ranking of nutrients related to chemical bond, solubility, volatility and predisposition to losses in the farm's compartment and environment.