Information about the relationships between preservation characteristics and main bacterial communities of fermented feeds can guide decision making during feed preservation and silage additive development. The objective was to evaluate fermentation quality, aerobic stability, microbial quality and bacterial profile of crimped barley grains ensiled under three moisture contents (MC): 228 (low MC), 287 (medium MC) and 345 (high MC) g/kg fresh matter; and using four additive treatments: 1. Control (CONT), 2. Formic and propionic acid-based additive (FPA), 3. Inoculation with homofermentative and heterofermentative strains of lactic acid bacteria (LAB), and 4. Salt-based additive (SALT). There was a quadratic effect (p < 0.05) of incremental MC on pH where greater decline happened from low (5.81) to medium (4.83) MC than from medium to high (4.28) MC, while lactic acid concentration and aerobic stability increased in a linear manner (p < 0.05). Ammonia-N and acetic acid concentrations increased quadratically (p < 0.05) with increasing levels of MC. The effects of additives depended on MC so that improvements in preservation characteristics in response to LAB and SALT were observed at medium and high MC, while FPA was effective at all MC levels. A minor shift was observed in bacterial ecology from raw material towards low MC samples, with Erwiniaceae sp., Enterobacterales spp. and Pseudomonas dominating the fermentation. A major change occurred in medium and high MC materials, where Fructilactobacillus dominated the fermentation in CONT, FPA and SALT silages. LAB-treated silages at medium and high MC resulted in a distinguished pattern with dominance of Lentilactobacillus followed by Lactiplantibacillus. Most abundant communities in the samples, such as Fructilactobacillus, Erwiniaceae sp., Enterobacterales spp. and Pseudomonas, were correlated with several fermentation characteristics. Our results showed that crimped barley grains could be successfully ensiled under various MC and additive treatments. Low MC feeds had higher risk to be aerobically unstable while high MC resulted in more extensive fermentation, with potentially poor fermentation quality. The suitable additive depends on the raw material characteristics as LAB and SALT require relatively high MC to be effective, while FPA showed consistent improvements over all MC levels used in the current study. Awareness of the MC of grain prior to ensiling allows to identify the risks to preservation quality and provides information for choosing an effective additive.