In this study, we analyzed the fermentation quality, microbial community, and metabolome characteristics of ryegrass silage from different harvests (first harvest-AK, second harvest-BK, and third harvest-CK) and analyzed the correlation between fermentative bacteria and metabolites. The bacterial community and metabolomic characteristics were analyzed by single-molecule real-time (SMRT) sequencing and ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS/MS), respectively. After 60 days of ensiling, the pH of BK was significantly lower than those of AK and CK, and its lactic acid content was significantly higher than those of AK and CK. Lactiplantibacillus and Enterococcus genera dominate the microbiota of silage obtained from ryegrass harvested at three different harvests. In addition, the BK group had the highest abundance of Lactiplantibacillus plantarum (58.66%), and the CK group had the highest abundance of Enterococcus faecalis (42.88%). The most annotated metabolites among the differential metabolites of different harvests were peptides, and eight amino acids were dominant in the composition of the identified peptides. In the ryegrass silage, arginine, alanine, aspartate, and glutamate biosynthesis had the highest enrichment ratio in the metabolic pathway of KEGG pathway enrichment analysis. Valyl-isoleucine and glutamylvaline were positively correlated with Lactiplantibacillus plantarum. D-Pipecolic acid and L-glutamic acid were positively correlated with Levilactobacillus brevis. L-phenylalanyl-L-proline, 3,4,5-trihydroxy-6-(2-methoxybenzoyloxy) oxane-2-carboxylic acid, and shikimic acid were negatively correlated with Levilactobacillus brevis. In conclusion, this study explains the effects of different harvest frequencies on the fermentation quality, microbial community, and metabolites of ryegrass, and improves our understanding of the ensiling mechanisms associated with different ryegrass harvesting frequencies.
L. indica L. cv. Mengzao, a medicinal plant of the Ixeris genus, is rich in flavonoids. In order to thoroughly analyze the the distribution and dynamic change of major flavonoids in its various parts from different growth periods, the flavonoids extracted from L. indica L. cv. Mengzao were identified and quantitatively analyzed by ultra-high-performance liquid chromatography mass spectrometer (LC-MS/MS). Results indicated that 15 flavonoids were identified from L. indica L. cv. Mengzao, and rutin, luteolin, luteolin-7-O-glucoside, kaempferol, quercetin, and apigenin are the major flavonoids in L. indica L. cv. Mengzao. In general, the total flavonoids’ content in different parts of L. indica L. cv. Mengzao followed the order flowers > leaves > stems > roots. Flowers and leaves are the main harvesting parts of L. indica L. cv. Mengzao, and the flowering period is the most suitable harvesting period. This study provides valuable information for the development and utilization of L. indica L. cv. Mengzao and determined the best part to harvest and the optimal time for harvesting.
In this study, the triterpenoids in the leaves of Lactuca indica L.cv. Mengzao (LIM) were extracted via microwave-assisted ethanol extraction, and the optimum extraction conditions for triterpenoids were determined through single-factor experiments and the Box–Behnken method. The effects of three factors (solid–liquid ratio, microwave power and extraction time) on the total triterpenoids content (TTC) were evaluated. The TTC of different parts (roots, stems, leaves and flowers) of LIM in different growth stages was studied, and the scavenging effects of the highest TTC parts on DPPH, ABTS and hydroxyl free radicals were investigated. The results showed that the optimum extraction conditions for microwave-assisted extraction of total triterpenoids from LIM leaves were as follows: solid–liquid ratio of 1:20 g/mL; microwave power of 400 W; and extraction time of 60 min. Under these conditions, the TTC was 29.17 mg/g. Compared with the fresh raw materials, the TTC of the materials increased after freeze drying. The leaves of LIM had the highest TTC, and the flowering stage was the best time. The triterpenoids from the leaves had a strong ability to eliminate DPPH and ABTS free radicals, and the elimination effect of dried leaves was better than that of fresh leaves, while the elimination effect of hydroxyl free radicals was not obvious. The tested method was used to extract total triterpenoids from LIM using a simple process at low cost, which provides a reference for developing intensive processing methods for L. indica.
During aerobic exposure of silage, the fatty acid and amino acid composition may alter the quality and palatability, resulting in economic losses in livestock production. The objective of this study was to evaluate the effects of Lactiplantibacillus plantarum (LP), Lenti Lentilactobacillus buchneri (LB), and a mixture of LP and LB (PB) on the fatty acids, amino acids, and antioxidant capacity of Leymus chinensis silage during aerobic exposure. The lactic acid bacteria were added at 1 × 106 CFU/g. The silage treatments were opened after 60 days of fermentation, and sampled on days 0, 4, and 8 of aerobic exposure. The LB group had higher total fatty acid and polyunsaturated fatty acid content, and less decrease in amino acid content and antioxidant capacity, while the LP group had a higher monounsaturated fatty acid content but a larger decrease in all indicators after exposure. Correlation analysis showed that Lactobacillus, Cryptococcus, Penicillium, and Thermoascus were more correlated with fatty acid changes, and that Lactobacillus, Actinomyces, Clostridium, and Penicillium were more correlated with amino acid changes. In conclusion, Lentilactobacillus buchneri could effectively improve the antioxidant capacity and fatty acid and amino acid contents of Leymus chinensis silage during aerobic exposure, while Lactiplantibacillus plantarum could effectively improve the content of each index of Leymus chinensis silage at opening, but deterioration was faster during aerobic exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.