Renewable energy sources derived from biomass, such as synthesis gases, represent an opportunity to take advantage of available waste resources and contribute to global energy rationing. This study developed an analysis with computational fluid dynamics (CFD) to estimate the energy behavior of synthesis gases through a turbocharger system. The synthesis gas used to drive the turbocharger turbine was extracted from the gasification of biomass from the Colombian Caribbean. The application of models for rigid body motion, as well as models of momentum, turbulence, energy, and conservation transport of species, suggest that the energy potential available by the turbine ranges from 0.4 kW to 5.2 kW of power generation, concerning mass flow rates entering the simulated system. The main findings of the study were temperature profiles, speed profiles, rotational speed variation, torque, and mechanical power generated in the turbocharger. It is emphasized that the synthesis gas studied presents a good behavior to generate energy through a turbine system of a turbocharger device.