Using the effective mass approximation in a parabolic two-band model, we studied the effects of the geometrical parameters, on the electron and hole states, in two truncated conical quantum dots: (i) GaAs-(Ga,Al)As in the presence of a shallow donor impurity and under an applied magnetic field and (ii) CdSe–CdTe core–shell type-II quantum dot. For the first system, the impurity position and the applied magnetic field direction were chosen to preserve the system’s azimuthal symmetry. The finite element method obtains the solution of the Schrödinger equations for electron or hole with or without impurity with an adaptive discretization of a triangular mesh. The interaction of the electron and hole states is calculated in a first-order perturbative approximation. This study shows that the magnetic field and donor impurities are relevant factors in the optoelectronic properties of conical quantum dots. Additionally, for the CdSe–CdTe quantum dot, where, again, the axial symmetry is preserved, a switch between direct and indirect exciton is possible to be controlled through geometry.