Inertial effects play an important role in classical mechanics but have been
largely overlooked in quantum mechanics. Nevertheless, the analogy between
inertial forces on mass particles and electromagnetic forces on charged
particles is not new. In this paper, we consider a rotating non-interacting
planar two-dimensional electron gas with a perpendicular uniform magnetic field
and investigate the effects of the rotation in the Hall conductiv
We review some current ideas about tripartite entanglement, the case representing the next level of complexity beyond the simplest one (though far from trivial), namely the bipartite. This kind of entanglement has an essential role in the understanding of foundations of quantum mechanics. Also, it allows several applications in the fields of quantum information processing and quantum computing. In this paper, we make a revision about the main foundational aspects of tripartite entanglement and we discuss the possibility of using it as a resource to execute quantum protocols. We present some examples of quantum protocols in detail.
In this paper, motivated by the experimental evidence of rapidly rotating C60 molecules in fullerite, we study the low-energy electronic states of rotating fullerene within a continuum model. In this model, the low-energy spectrum is obtained from an effective Dirac equation including non-Abelian gauge fields that simulate the pentagonal rings of the molecule. Rotation is incorporated into the model by solving the effective Dirac equation in the rotating referential frame. The exact analytical solution for the eigenfunctions and energy spectrum is obtained, yielding the previously known static results in the no rotation limit. Due to the coupling between rotation and total angular momentum, that appears naturally in the rotating frame, the zero modes of static C60 are shifted and also suffer a Zeeman splitting whithout the presence of a magnetic field.
The problem of noise incidence on qubits taking part of bipartite entanglement-based protocols is addressed. It is shown that the use of a three-partite GHZ state and measurements instead of their EPR counterparts allows the experimenter to detect 2/3 of the times whenever one of the qubits involved in the measurement is affected by bit-flip noise through the mere observation of unexpected outcomes in the teleportation and superdense coding protocols when compared to the ideal case.It is shown that the use of post-selection after the detection of noise leads to an enhancement in the efficiency of the protocols. The idea is extended to any protocol using entangled states and measurements. Furthermore it is provided a generalization in which GHZ states and measurements with an arbitrary amount of qubits are used instead of EPR pairs, and remarkably, it is concluded that the optimal number of qubits is only three.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.