We proposed two entanglement concentration protocols (ECPs) to obtain maximally entangled Greenberger-Horne-Zeilinger (GHZ)-type entangled coherent state (ECS) from the corresponding partially entangled GHZ-type ECSs. We obtained the first ECP using a partially entangled GHZ-type ECS assisted with a superposition of single-mode coherent state, however the second ECP is designed using two copies of partially entangled GHZ-type ECSs. The success probabilities have also been calculated and discussed for both the ECPs. We have further compared the success probabilities of our first ECP for 3-mode GHZ-type ECS with an ECP of 3-mode W-type ECS and found that our ECP is more efficient (maximal success probabilities) for larger value (β = 0.7) of state parameter. For the physical realization, two optical circuits (for two ECPs) using linear optical elements, viz 50:50 beam splitter, phase shifter, and photon detectors are provided, which support the future experimental implementation possible with the present technology.