Simple SummaryWith its drought tolerant and high productive characteristics, Zhang hybrid millet is becoming an important food source for both humans and animals. Whole plant Zhang hybrid millet has great potential in lowering feed cost while providing relatively high crude protein, vitamin, and mineral content. This study aimed to disclose whether harvest time and microbial anaerobic fermentation can improve ruminal degradability and intestinal digestibility of whole Zhang hybrid millet, and explore the effect of microbial anaerobic fermented whole Zhang hybrid millet as feedstuff on milk yield and milk quality. Results showed that the interaction effect of harvest time and microbial anaerobic fermentation had significant influence on the crude ash, Acid detergent fiber (ADF), water-soluble carbohydrate (WSC), and neutral detergent insoluble protein (NDIP) content and effective degradability of dry matter (EDDM) of whole Zhang hybrid millet. Early harvested whole Zhang hybrid millet with microbial anaerobic fermentation appeared to have a better chemical profile with lower content of crude ash, Neutral detergent fiber (NDF), ADF, and higher content of WSC, and a better ruminal degradability with lower EDDM, effective degradability of neutral crude protein EDCP, and effective degradability of neutral detergent fiber (EDNDF). Microbial anaerobic fermented whole Zhang hybrid millet as feedstuff did not significantly affect milk components, but significantly reduced somatic cell count ( SCC) compared with controls. Milk yield was numerically higher in whole Zhang hybrid millet groups. Collectively, harvest time and microbial anaerobic fermentation could further improve the nutritive value of whole Zhang hybrid millet. Microbial anaerobic fermented whole Zhang hybrid millet as an alternative feedstock for dairy diet was safe and feasible.AbstractThis study assessed whether harvest time and microbial anaerobic fermentation could affect ruminal degradability and intestinal digestibility of whole Zhang hybrid millet, and estimate the effect of microbial anaerobic fermented whole Zhang hybrid millet as feedstuff on milk yield and milk quality. Protein degradation and intestinal digestion were determined using in situ nylon bag technique and three-step in vitro method, respectively. Results showed that harvest time, microbial anaerobic fermentation, or their interaction significantly affected EDDM, EDCP, and EDNDF (p < 0.05). In vitro fermentation was significantly influenced by harvest time. Early harvested samples appeared to have higher Total volatile fatty acid (TVFA) and lower acetate: propionate ratio than late harvested ones (p < 0.01). However, significant effect of harvest time and fermentation was failed to find in the estimation of rumen-undegradable protein (RUP) (p > 0.05). Microbial anaerobic fermented whole Zhang hybrid millet as feedstuff provided similar milk compositions compared with controls, and it significantly reduced SCC (p = 0.04). Milk yield was numerically higher in whole Zhang hybrid millet grou...