This work was initiated with the purpose of expanding the utilization of nickel-based composite coatings, especially in wear and corrosion-related industrial applications. NiCoP coatings have long attracted scientific and engineering interest due to their enhanced mechanical properties reinforced by incorporation with a reinforcement phase. In the present study, NiCoP composite coatings reinforced with ZrB2 ceramic particles were synthesized by direct current deposition using a modified Watt’s type bath. The microstructures of composite coatings were studied by X-ray diffraction analysis, energy dispersive X-ray spectroscopy, and scanning electron microscopy, respectively. The hardness and tribological properties of the composite coatings were evaluated and compared. The corrosion behaviors of the deposits were investigated using electrochemical spectroscopy and potentiodynamic polarization techniques in simulated seawater. The effect of ZrB2 content on the microstructures and mechanical properties of the composite coatings was explored and discussed. The present study indicates that there is a progressive enhancement in the hardness, corrosion resistance, and wear resistance of the composite coatings with the increase in ZrB2 loading. The NiCoP-12 g/L-ZrB2 coating possesses the highest microhardness and superior wear performance, while the NiCoP-6 g/L-ZrB2 coating exhibits the best anti-corrosion properties. The present study shows a cost-effective and feasible solution for the preparation of NiCoP protective coatings with enhanced properties, which holds great potential for industrial applications requiring wear and anti-corrosion protection.