The adaptive movement of the tongue after unilateral lesion of the hypoglossal (XII) nerve during the early postnatal days is essential for recovery of milk intake. The present study investigated the basic mechanisms underlying such adaptation, focusing on the neural plasticity that allows effective suckling. After resection of the ipsilateral XII nerve on P1, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlolate (DiI), a postmortem neuronal tracer, was applied to the contralateral uninjured XII nerve on P4 and P7. DiI-labeled fibers were traced successfully within the tongue and showed gradually increased extension over the XII nerve-injured side in the central core portion of the denervated tongue between P4 and P7. Systematic neuroanatomic experiments showed that contralateral axonal sprouting occurred as early as 1 day after nerve injury (P2), and that such axonal sprouting occurred exclusively from the medial branch of the XII nerve responsible for tongue protrusion, an essential movement for suckling. These findings provide direct evidence of functional neural plasticity that allows effective suckling in XII nerve-injured newborns with suckling disturbance.