The notion that good nutrition is essential for adequate growth and sound physical wellbeing is very well established. Further, in recent years, there has been an overwhelming increase in research dedicated to better understanding how nutritional factors influence cognition and behavior (Riby et al., 2012). An aim of this Research Topic was to bring together Review, Opinion and Original Research articles reflecting the current science in this discipline. These include the effects of a range of foods and nutritional substrates on acute and chronic human neurocognitive functioning. The 13 accepted papers which form this Research Topic cover a diverse range of topics relating nutritional factors to neurocognitive functioning and performance. The articles demonstrate that neurocognitive performance is influenced by nutritional factors ranging from the dietary level (e.g., whole diet and meal composition) through to effects of macronutrients (such as glucose and omega-3 fatty acids) and micronutrients (vitamins, iron) on neurocognitive performance.An objective of this research topic was to consider how various nutritional factors impact upon neurocognitive functioning at different stages of the lifespan. A number of the submissions focused on effects of nutrition in childhood, during which time nutrition plays an important role in growth and development, including via influences on constituents of the human central nervous system. A review by Nyaradi et al. (2013) considered the role of nutrition from a very broad perspective on neurocognitive development from the prenatal period through to childhood. This suggested that while observational studies have supported an important role for several individual nutrients (such as omega-3 fatty acids, B vitamins, iron) in the neurocognitive development of children, intervention studies aimed at supplementing intake of these individual nutrients have demonstrated inconclusive benefits. The authors of this review also highlighted the beneficial neurocognitive effects of breastfeeding and regular breakfast consumption as well as the impairing neurocognitive effects of childhood malnutrition. Kitsao-Wekulo et al. (2013) aimed to extend current understanding of this link between childhood malnutrition and poor cognitive outcomes, by investigating nutritional status as a mediator of the relationship between several socio-demographic variables and cognitive function in a sample of predominantly rural-dwelling Kenyan children. Nutritional status was found to mediate the relationship between socio-demographic factors and (i) language, (ii) motor function, and (iii) executive functioning in this study. With respect to specific micronutrient deficiencies that translate to adverse neurocognitive outcomes, Radlowski and Johnson (2013) reviewed the literature relating to the most common global nutrient deficiency, namely iron deficiency. They report that maternal anemia during the perinatal period increases the risk of delayed neurocognitive development. A further nutrient for which intake...