The association between rapamycin and astrocytes in a tumor-bearing mouse model with brain metastases of non-small cell lung cancer (NSCLC) was investigated. For in vitro experiments, NCI-H358, a human lung adenocarcinoma cell line, was co-cultured with immortalized astrocytes, and treated with rapamycin, an mTOR inhibitor. We evaluated the expression of interleukin-1 (IL-1), interleukin-3 (IL-3), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β), insulin-like growth factor-1 (IGF-1), platelet-derived growth factor (PDGF), chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1 (MIP-1) in tumor cells in vivo. Rapamycin is cytotoxic in vitro; however, co-culturing tumor cells and astrocytes induced tumor cell survival. IL-1, IL-3, IL-6, TNF-α, TGF-β, PDGF, MCP-1 and MIP-1 expression were higher in rapamycin-treated mice compared to the control group, however, IGF-1 expression was lower. Notably, treatment with rapamycin before inoculating tumor cells affected cytokine expression in the tumor microenvironment. We suggest that growth factors and cytokines in the tumor microenvironment play a role in the survival of cancer cells in brain metastases.