The worldwide occurrence of cyanobacterial blooms makes it necessary to perform environmental risk assessment procedures to monitor the effects of microcystins (MCs) on fish. Oxidative stress biomarkers are valuable tools in this regard. In the present study, phytoplanktivorous bighead carp (Aristichthys nobilis) were injected intraperitoneally (i.p.) with extracted MCs (mainly MC-RR and -LR) at two doses, 400 and 1,000 lg kg -1 bw, and antioxidant responses of the liver as biomarkers of oxygenmediated toxicity were studied at 1, 3, 12, 24 and 48 h after injection. Contents of reactive oxygen species (ROS) and activities of antioxidant enzymes [catalase (CAT), superoxide dismutase (SOD), glutathione peroxide (GPX), and glutathione reductase (GR)] as well as glutathione S-transferase (GST) in the liver in both dose groups showed a biphasic change with an increase at initial 3 h followed by a decrease after injection, owing to the roles of the antioxidant system in eliminating excessive ROS and regenerating glutathione (GSH). The increased GST was probably due to the high transcription of cytosolic GST a and q, suggesting the importance of MCs detoxification by GSH pathway. The stable GSH levels in liver may be explained by the high basic GSH concentration in liver, and/or an increased GSH synthesis, suggesting a high ability to detoxify MCs and to release associated high oxidative pressure in phytoplantivorous fish.