In recent years, promising results have been reported with the vibrating intrinsic reverberation chamber (VIRC) combining performance and cost-efficiency for electromagnetic compatibility (EMC) measurements. This also makes it a potentially attractive solution for over-the-air (OTA) testing, which is yet to be investigated. Therefore, this article proposes the first systematic and thorough methodology to characterize the VIRC for use in EMC and OTA testing of wireless baseband algorithms of narrowband single-input single-output channels. This methodology has been developed to measure and estimate the channel first-and second-order temporal and spectral characteristics taking into consideration the effect of different carrier frequencies, rotational speeds of VIRC motors, and loading conditions. It is then applied to a channel setup inside a VIRC for a preliminary investigation before the VIRC itself is fully characterized. It is shown that mounting an absorber in a specific location on the hatch significantly improves the rejection rate of the chi-squared goodness-of-fit test for Rician distribution without increasing the K-factor above −10 dB over the frequency range 755-2740 MHz in the VIRC under investigation. However, the proposed methodology has been devised to be universal to any reverberation chamber, and the obtained results can be used to improve EMC testing due to the better understanding of the unique VIRC environment.