This study aims to investigate the relationship between metabolic parameters and the number of embryos produced in superovulated cows with high genetic characteristics in milk yield. Eighteen Holstein donors were treated with classic superovulation protocols, AI and flushing. During superovulation, decreasing doses of FSH (follicle‐stimulating hormone) were administered at 12‐h intervals for 4 days. Plasma insulin‐like growth factor (IGF1), glucose (GLU), beta‐hydroxybutyric acid (BHB), non‐esterified fatty acid (NEFA), blood urea nitrogen (BUN) and total protein (TP) levels were determined by using an autoanalyzer. The mixed model analysis of variance was used for statistical analysis. As a result, plasma IGF1, BHB and BUN had significant interactions with both groups and days (p < .05). Additionally, plasma TP–days interactions were significant (p < .05). Furthermore, there was a negative correlation between the number of embryos and plasma BHB levels (p < .05). In conclusion, under appropriate environmental conditions, metabolic profile control of donors can contribute to the embryo production process and to the studies on the metabolic infrastructure.