Increased inflammatory signaling in microglia is implicated in the pathogenesis of neurodegenerative diseases, trauma, psychiatric disorders, and anxiety/depression. Understanding inflammatory signaling in microglia is critical for advancing treatment options. Studying rodent-derived microglia has yielded substantial information, yet, much remains to better understand inflammatory signaling in human microglia. Hence, there is great interest in developing immortalized human microglial cell lines. The C20 human microglial cell line was recently developed and our primary objective was to advance our knowledge of inflammatory signaling in these cells. Methods: Expression of the microglia specific marker transmembrane protein 119 (TMEM119) was assessed by western blot analysis. Lipopolysaccharide (LPS)-and interleukin-1β (IL-1β)-induced cytokine/chemokine expression was determined by ELISA. Phosphorylation of inhibitory kappa B alpha (IκBα), nuclear factor (NF)-κB p65, and p38 mitogen-activated protein kinase (p38 MAPK) was measured by western blot analysis. Results: TMEM119 was expressed in unstimulated C20 cells, and to a greater extent in IL-1β-stimulated cells. IL-1β significantly induced IL-6, monocyte chemoattractant protein-1/CCL2, and interferon-γ inducible protein 10/CXCL10 expression. LPS induced CCL2 expression, but not IL-6 or CXCL10 expression. IL-1β induced inflammatory signaling as indicated by increased phosphorylation of IκBα, NF-κB p65 and p38 MAPK. Conclusion: We provide the first evidence that C20 microglia express TMEM119. This is the initial report of IL-1βinduced activation of IκBα, NF-κB p65, and p38 MAPK and subsequent CXCL10, CCL2 and IL-6 secretion in C20 cells. These findings advance our understanding of inflammatory signaling in C20 cells and support the value of this cell line as a research tool.