Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In this paper, the detailed steady and unsteady numerical investigations of a 1.5-stage axial flow turbine are conducted to determine the specific influence of interplatform steps in the first stator—as caused by deviations in manufacturing or assembly. A basic first stator design and a design consisting of a bow and endwall contours are compared. Apart from step height, the position and geometry of the interplatform border are varied for the basic design. To create the steps, every third stator vane was elevated, together with its platforms at hub and shroud, such that the flow capacity is only little affected. The results show that the effects of steps on the platform borders in front and aft of the first stator can be decoupled from those occurring on the interplatform steps. For the latter, being the main contributor to the additional loss, the intensity of recirculation zones and losses increase substantially when the platform border is located close to the suction side. Using a relative step height of 1.82% span, the entropy production doubles when compared to a position close to the pressure side, which can be explained by differences in local flow velocity level. Regarding a circular-arc-shaped platform, the losses can be more than halved—mainly due to lower included angles between step and endwall flow streamlines. The findings can be explained by a nondimensional relation of the local entropy production using local values for step height and characteristic flow quantities. Furthermore, a reduction in step height leads to an attenuation of the otherwise linear relationship between step height and entropy production, which is mainly due to lower local ratio of step height and boundary layer thickness. In the case of laminar or transitional flow regions on the endwall, typical for turbine rigs with low inlet turbulence and low-pressure turbines under cruise conditions, the steps lead to immediate local flow transition and thus substantially different results.
In this paper, the detailed steady and unsteady numerical investigations of a 1.5-stage axial flow turbine are conducted to determine the specific influence of interplatform steps in the first stator—as caused by deviations in manufacturing or assembly. A basic first stator design and a design consisting of a bow and endwall contours are compared. Apart from step height, the position and geometry of the interplatform border are varied for the basic design. To create the steps, every third stator vane was elevated, together with its platforms at hub and shroud, such that the flow capacity is only little affected. The results show that the effects of steps on the platform borders in front and aft of the first stator can be decoupled from those occurring on the interplatform steps. For the latter, being the main contributor to the additional loss, the intensity of recirculation zones and losses increase substantially when the platform border is located close to the suction side. Using a relative step height of 1.82% span, the entropy production doubles when compared to a position close to the pressure side, which can be explained by differences in local flow velocity level. Regarding a circular-arc-shaped platform, the losses can be more than halved—mainly due to lower included angles between step and endwall flow streamlines. The findings can be explained by a nondimensional relation of the local entropy production using local values for step height and characteristic flow quantities. Furthermore, a reduction in step height leads to an attenuation of the otherwise linear relationship between step height and entropy production, which is mainly due to lower local ratio of step height and boundary layer thickness. In the case of laminar or transitional flow regions on the endwall, typical for turbine rigs with low inlet turbulence and low-pressure turbines under cruise conditions, the steps lead to immediate local flow transition and thus substantially different results.
For this work, reality effects, more precisely backward-facing steps (BFSs) and forward-facing steps (FFSs), and their influence on the flow through a two-stage two-spool turbine rig under engine-relevant conditions were experimentally investigated. The test rig consists of an high pressure (HP) and an low pressure (LP) stage, with the two rotors rotating in opposite direction with two different rotational speeds. An S-shaped transition duct, which is equipped with turning struts (so-called turning mid turbine frame (TMTF)) and making therefore a LP stator redundant, connects both stages and leads the flow from a smaller to a larger diameter. This test setup allows the investigation of a TMTF deformation, which occurs in a real aero-engine due to non-uniform warming of the duct during operation—especially during run up—and causes BFSs and FFSs in the flow path. This happens for nonsegmented ducts, which are predominantly part of smaller engines. In the case of the test rig, steps were not generated by varying temperature but by shifting the TMTF in horizontal direction while the rotor and its casing were kept in the same position. In this way, both BFSs and FFSs between duct endwalls and rotor casing could be created. In order to avoid steps further downstream of the interface between HP rotor and TMTF, the complete aft rig was moved laterally too. In this case, the aft rig incorporates among others the LP rotor, the LP rotor casing, and the deswirler downstream of the LP stage. In order to catch the influence of the steps on the whole flow field, 360 deg rake traverses were performed downstream of the HP rotor, downstream of the duct, and downstream of the LP rotor with newly designed, laser-sintered combi-rakes for the measurement of total pressure and total temperature. Only the compact design of the rakes, which can be easily realized by additive manufacturing, makes the aforementioned 360 deg traverses in this test rig possible and allows a number of radial measurements positions, which is comparable to those of a five-hole probe. To get a more detailed information about the flow, also five-hole probe measurements were carried out in three measurement planes and compared to the results of the combi-rakes.
In this paper detailed steady and unsteady numerical investigations of a 1.5 stage axial flow turbine are conducted to determine the specific influence of inter-platform steps in the first stator — as caused by deviations in manufacturing or assembly. A basic first stator design and a design consisting of a bow and endwall contours are compared. Apart from step height, the position and geometry of the inter-platform border are varied for the basic design. To create the steps, every third stator vane was elevated, together with its platforms at hub and shroud — such that the flow capacity is only little affected. The results show that the effects of steps on the platform borders in front and aft of the first stator can be decoupled from those occurring on the inter-platform steps. For the latter — being the main contributor to the additional loss — the intensity of recirculation zones and losses increase substantially when the platform border is located close to the suction side. Using a relative step height of 1.82 % span, the entropy production doubles when compared to a position close to the pressure side, which can be explained by differences in local flow velocity level. Regarding a circular-arc shape platform, the losses can be more than halved — mainly due to lower included angles between step and endwall flow streamlines. The findings can be explained by a non-dimensional relation of the local entropy production using local values for step height and characteristic flow quantities. Furthermore, a reduction in step height leads to an attenuation of the otherwise linear relationship between step height and entropy production, which is mainly due to lower local ratio of step height and boundary layer thickness. In the case of laminar or transitional flow regions on the endwall — typical for turbine rigs with low inlet turbulence and low-pressure turbines under cruise conditions — steps lead to immediate local flow transition and thus substantially different results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.