We review the literature concerned with the effect of proximity to a filler surface on the local segmental mobility of polymer chains. This mobility is commonly assessed from either the glass transition temperature, Tg, or the segmental relaxation times measured by mechanical, dielectric, or NMR spectroscopy. Published studies report increases, decreases, or no change in Tg upon the addition of carbon black, silica, and other reinforcing fillers. Similarly, the segmental relaxation times have been found to increase or be invariant to the presence of nanometer-sized particles. Some of these discrepancies can be ascribed to ambiguous methods of data analysis; others likely reflect the variation in filler-polymer interaction among different systems. There are unequivocal examples of polymers that have segmental dynamics and glass transitions unaffected by nano-particle reinforcement. However, the general principles governing the behavior remain to be clarified, with further work, focusing on the micromechanics at the particle interface, required for resolution of this important aspect of rubber science and technology.