The classical uncertainty principle inequalities are imposed over the general relativity geodesic equation as a mathematical constraint. In this way, the uncertainty principle is reformulated in terms of proper space–time length element, Planck length and a geodesic-derived scalar, leading to a geometric expression for the uncertainty principle (GeUP). This re-formulation confirms the need for a minimum length of space–time line element in the geodesic, which depends on a Lorentz-covariant geodesic-derived scalar. In agreement with quantum gravity theories, GeUP imposes a perturbation over the background Minkowski metric unrelated to classical gravity. When applied to the Schwarzschild metric, a geodesic exclusion zone is found around the singularity where uncertainty in space-time diverged to infinity.