The objective of this study is to delineate whether overexpression of human efflux transporters (P-gp, MRP2, and BCRP) in transfected MDCK cells affect the functional activities, and gene and protein expression of endogenous influx peptide transporter system (PepT). Real-time PCR, immunoblotting, uptake and permeability studies of [3H]Gly-Sar were conducted on transfected MDCKII and wild-type cells to investigate functional differences. Cellular [3H]Gly-Sar accumulation was significantly lower in transfected MDCKII cell lines compared to wild-type cells. Transport efficiency of apical peptide transporters was markedly reduced to around 25%, 30%, and 40% in P-gp-, MRP2-, and BCRP-overexpressed MDCK cell lines, respectively. With ascending cell-passage, transport efficiency was enhanced. A significantly higher Gly-Sar permeability was observed across parental cell-monolayers over transfected cells at all pHs. Levels of mRNA for both canine PepT1 and PepT2 were substantially reduced when efflux transporters overexpressed but enhanced when mRNA-levels of efflux genes diminished with ascending cell-passage of transfected cells. An inverse correlation was evident between endogenous PepT and exogenous efflux transporters in transfected MDCKII cells. Results of protein expression also supported these findings. Overexpression of MDR genes can affect endogenous PepT function which might be due to the phenomenon of transporter-compensation resulting in down-regulation of endogenous genes.