Abstract.Vascularization is an important aspect of tissue regeneration. Hypoxia, low oxygen concentration, is a known stimulus for the release of vascular endothelial growth factors (VEGF) which play important roles in vascularization. The current study aimed to assess the effect of a cobalt-containing bioactive glass (BG) in stimulating hypoxia and promoting vascularization. To incorporate cobalt into BG, 1 mol% of calcium was substituting with cobalt, and this formulation was compared to the one without cobalt. Both BGs were processed via melt-derived method. The BG powders with particle size less than 38 μm were incubated with cell culture medium for 4 hours at 37°C on continuous rolling, and then the medium was filtered using 0.22 μm syringe filters. Prior to use, the BG-conditioned media were supplemented with 10% (v/v) fetal bovine serum and 1% (v/v) antibiotic-antimycotic, and were allowed to equilibrate overnight inside a CO2 incubator. The conditioned media were used on human dental stem cells (stem cells from permanent (DPSC) and deciduous (SHED) teeth) and assessed for their capacity to stimulate the release of angiogenic factors from the cells. The results showed that cobalt ions were released from the cobalt-containing BG, following partial dissolution of the glasses in cell culture medium, and promoted VEGF release from the cells. In conclusion, the incorporation of cobalt in BG may have potential to be used for tissue regeneration by promoting vascularization through the activation of hypoxia pathway and the release of VEGF.