Meat analogues are made from plant proteins using high‐moisture extrusion processing, to have the same textural and structural properties as meat. However, meat analogues exhibit very weak aroma and are almost tasteless, which has resulted in limited market success. Maillard‐reacted beef bone hydrolysate (MRP) provides important sensory aspects of heat‐treated food products, by contributing to their appearance, texture, flavor, and aroma. Therefore, MRP added at different concentrations with the plant proteins before extrusion may produce meat alternatives with high aroma and taste quality while maintaining fibrous structure. This study investigated the effects of MRP at different concentrations (0%, 10%, 20%, 30%, and 40% wet weight) with plant proteins on the physicochemical properties of extruded meat alternatives. The textural, microstructural, chemical, and sensory properties of meat alternatives were studied, where meat alternatives consisting of 40% MRP showed the lowest degree of texturization and observed with multiple segmented layers accompanied with some fibrous microstructure. Results from protein solubility analysis suggested that a large proportion of aggregated proteins was associated with hydrogen bonds. Although the key force in the formation of fibrous structure in meat alternatives was disulphide bonds. Meat alternatives containing 20% MRP obtained highest sensory scores for appearance, meaty aroma, meaty taste, and overall acceptability. Overall results showed that the addition of MRP to produce meat alternatives changed the textural, structural, and sensory properties significantly.
Practical Application
Maillard‐reacted beef bone hydrolysate added into meat analogues to form meat alternatives with high aroma and taste quality while maintaining fibrous structure. The work demonstrated an opportunity for greater returns to the meat industry and the potential of hybrid products with less meat content.