The purpose of this study was to evaluate the effects of fucoidan supplementation on serum biochemical parameters, small intestinal barrier function, and cecal microbiota of weaned goat kids. A total of 60 2-month-old weaned castrated male goat kids (Chuanzhong black goat) were used in this 30-day experiment. The goat kids were randomly divided into four groups: a control group (CON) fed the basal diet, and three other groups supplemented with 0.1%, 0.3%, and 0.5% fucoidan in the basal diet (denoted as F1, F2, and F3 groups, respectively). The results indicated that dietary fucoidan supplementation decreased (p < 0.05) the activity of lactate dehydrogenase (LDH) and the content of glucose (GLU) as measured on day 15. As measured on day 30, dietary fucoidan increased (p < 0.05) the content of total protein (TP) and decreased the activity of aspartate aminotransferase (AST), and supplementation with 0.3% and 0.5% fucoidan decreased (p < 0.05) the activity of LDH. Dietary fucoidan decreased (p < 0.05) the content of D-lactic acid (D-LA) and the activity of diamine oxidase (DAO). Dietary fucoidan increased (p < 0.05) the activity of catalase (CAT) in the duodenum. Dietary 0.3% and 0.5% fucoidan enhanced (p < 0.05) the activity of glutathione peroxidase (GSH-Px) in the ileum, the activity of total superoxide dismutase (T-SOD) in the jejunum and ileum, and the activity of CAT in the ileum. Dietary 0.3% and 0.5% fucoidan reduced the contents of malondialdehyde (MDA) in the duodenum, jejunum, and ileum and the content of hydrogen peroxide (H2O2) in the duodenum. Dietary fucoidan increased (p < 0.05) the content of secretory immunoglobulin A (sIgA) in the duodenum. Supplementation of 0.3% and 0.5% fucoidan upregulated (p < 0.05) the gene expression of ZO-1 and claudin-1 in the duodenum, jejunum, and ileum, and dietary supplementation of 0.3% and 0.5% fucoidan upregulated (p < 0.05) the gene expression of occludin in the jejunum and ileum. The 16S rRNA high-throughput sequencing results showed that at the phylum level, dietary fucoidan increased (p < 0.05) the abundance of Bacteroidetes while decreasing (p < 0.05) the abundance of Firmicutes. At the genus level, dietary 0.3% and 0.5% fucoidan increased (p < 0.05) the abundances of Unspecified_Ruminococcaceae, Unspecified_Bacteroidale, Unspecified_Clostridiales, and Akkermansia. In conclusion, dietary fucoidan supplementation had positive effects on intestinal permeability, antioxidant capacity, immunity function, tight junctions, and the cecal microflora balance in weaned goat kids.