Purpose
To assess the effect of central and peripheral stimulation on the pupillary light reflex. The aim was to detect possible differences between cone- and rod-driven reactions.
Methods
Relative maximal pupil constriction amplitude (relMCA) and latency to constriction onset (latency) to cone- and rod-specific stimuli of 30 healthy participants (24 ± 5 years (standard deviation)) were measured using chromatic pupil campimetry. Cone- and rod-specific stimuli had different intensities and wavelengths according to the Standards in Pupillography. Five filled circles with radii of 3°, 5°, 10°, 20° and 40° and four rings with a constant outer radius of 40° and inner radii of 3°, 5°, 10° and 20° were used as stimuli.
Results
For cone-and rod-specific stimuli, relMCA increased with the stimulus area for both, circles and rings. However, increasing the area of a cone-specific ring by minimizing its inner radius with constant outer radius increased relMCA significantly stronger than the same did for a rod-specific ring. For cones and rods, a circle stimulus with a radius of 40° created a lower relMCA than the summation of the relMCAs to the corresponding ring and circle stimuli which combined create a 40° circle-stimulus. Latency was longer for rods than for cones. It decreased with increasing stimulus area for circle stimuli while it stayed nearly constant with increasing ring stimulus area for cone- and rod-specific stimuli.
Conclusion
The effect of central stimulation on relMCA is more dominant for cone-specific stimuli than for rod-specific stimuli while latency dynamics are similar for both conditions.