Integrating magnetic functionalities with silicon holds the promise of developing, in the most dominant semiconductor, a paradigm-shift information technology based on the manipulation and control of electron spin and charge. Here, we demonstrate an ion implantation approach enabling the synthesis of a ferromagnetic layer within a defect free Si environment by exploiting an additional implant of hydrogen in a region deep below the metal implanted layer. Upon post-implantation annealing, nanocavities created within the H-implanted region act as trapping sites for gettering the implanted metal species, resulting in the formation of metal nanoparticles in a Si region of excellent crystal quality. This is exemplified by the synthesis of magnetic nickel nanoparticles in Si implanted with H+ (range: ∼850 nm; dose: 1.5 × 1016 cm−2) and Ni+ (range: ∼60 nm; dose: 2 × 1015 cm−2). Following annealing, the H implanted regions populated with Ni nanoparticles of size (∼10–25 nm) and density (∼1011/cm2) typical of those achievable via conventional thin film deposition and growth techniques. In particular, a maximum amount of gettered Ni atoms occurs after annealing at 900 °C, yielding strong ferromagnetism persisting even at room temperature, as well as fully recovered crystalline Si environments adjacent to these Ni nanoparticles. Furthermore, Ni nanoparticles capsulated within a high-quality crystalline Si layer exhibit a very high magnetic switching energy barrier of ∼0.86 eV, an increase by about one order of magnitude as compared to their counterparts on a Si surface or in a highly defective Si environment.