Biodiesel produced from non-edible plant sources is cost-effective, biodegradable, environment friendly, and compatible with petro-diesel, but new sources and extraction processes still need to be discovered. Here, we explored the fuel properties of seeds from six non-edible plant sources, including Sapindus mukorossi (Soapnut, SP), Vernicia fordii (Tung, TO), Ricinus communis (Castor, CA), Toona sinensis (Juss. TS), Ailanthus altissima (Heaven tree, AA), and Linum usitatissimum L. (Lin seed, LS) from China. The optimum extraction conditions were obtained by optimizing the most important variables (reaction temperature, ratio of alcohol to vegetable oil, catalyst, mixing intensity, and purity of reactants) that influence the transesterification reaction of the biodiesel. All six plants contained high seed oil content (SOC; % w/v) with the highest in the TO-54.4% followed by SP-51%, CA-48%, LS-45%, AA-38%, and TS-35%, respectively, and all expressed satisfactory physico-chemical properties as per international standards of ASTM D6751 and EN14214. Our data provide a scientific basis for growing these plants in unproductive agricultural lands as an alternative energy sources for biodiesel production either standalone or blended with petro-diesel.