Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to measure the expression of microRNA-155 in patients with temporal lobe epilepsy. Commercial kit and western blot analysis were used to measure gap-associated protein expression. The aim of the present study was to investigate the effect of microRNA‑155 (miRNA‑155) in the occurrence of epilepsy and the molecular mechanism involved. In patients with temporal lobe epilepsy, miRNA‑155 expression was evidently higher than that in patients of the normal volunteers group. Overexpression of miRNA‑155 resulted in decreased brain‑derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) protein expression, increased caspase‑3 activity, tumor protein p53 (p53) and apoptosis regulator BAX (Bax) protein expression, and inhibited phosphoinositide 3‑kinase (PI3K), phosphorylated (p‑)protein kinase B (Akt) and p‑mechanistic target of rapamycin (mTOR) protein expression in epilepsy cells. PI3K inhibitor accelerated the effect of miRNA‑155 on the inhibition of BDNF and TrkB protein expression, the promotion of caspase‑3 activity, p53 and Bax protein expression, and the inhibition of PI3K, p‑Akt and p‑mTOR protein expression in epilepsy cells. The present findings indicate that miRNA‑155 contributes to the occurrence of epilepsy through the PI3K/Akt/mTOR signaling pathway.