Mosquitoes are globally distributed and important vectors for the transmission of many human diseases. Mosquito control is a difficult task and the cost of preventing mosquito-borne diseases is much lower than that for curing the associated diseases. Thus, chemical control remains the most effective tool for mosquito. Due to the long-term intensive use of insecticides to control mosquito vectors, resistance to most chemical insecticides has been reported. This study aimed to investigate the relationship between insecticide resistance and target site mutation of L1014 kdr and G119 ace alleles in 5 species/species group of mosquitoes (Aedes vexans, Ae. albopictus, Anopheles spp., Culex pipiens complex, and Cx. tritaeniorhynchus) obtained from 6 collection sites. For Anopheles spp., the proportion of mosquitoes with mutated alleles in L1014 was 88.4%, homozygous resistant genotypes were observed in 46.7%, and heterozygous resistant genotypes were observed in 41.8%. For the Cx. pipiens complex and Cx. tritaeniorhynchus species, homozygous resistant genotypes were found in 25.9% and 9.8%, respectively. However, target site mutation of L1014 in the Ae. vexans nipponii and Ae. albopictus species was not observed. Anopheles spp., Cx. pipiens complex, and Cx. tritaeniorhynchus mosquitoes were resistant to deltamethrin and chlorpyriphos, whereas Ae. vexans nipponii and Ae. albopictus were clearly susceptible. We also found a correlation between the resistance phenotype and the presence of the L1014 kdr and G119 ace mutations only in the Anopheles spp. population. In this study, we suggest that insecticide resistance poses a growing threat and resistance management must be integrated into all mosquito control programs.