Background
The corneal biomechanical properties with the prolongation of time after corneal refractive surgery are important for providing a mechanical basis for the occurrence of clinical phenomena such as iatrogenic keratectasia and refractive regression. The aim of this study was to explore the changes of corneal elastic modulus, and stress relaxation properties from the 6-month follow-up observations of rabbits after a removal of anterior corneal tissue in simulation to corneal refractive surgery.
Methods
The anterior corneal tissue, 6 mm in diameter and 30–50% of the original corneal thickness, the left eye of the rabbit was removed, and the right eye was kept as the control. The rabbits were normally raised and nursed for 6 months, during which corneal morphology data, and both of corneal hysteresis (CH) and corneal resistance factor (CRF) were gathered. Uniaxial tensile tests of corneal strips were performed at months 1, 3, and 6 from 7 animals, and corneal collagen fibrils were observed at months 1, 3, and 6 from 1 rabbit, respectively.
Results
Compared with the control group, there were statistical differences in the curvature radius at week 2 and month 3, and both CH and CRF at months 1, 2, and 6 in experiment group; there were statistical differences in elastic modulus at 1, 3, and month 6, and stress relaxation degree at month 3 in experiment group. The differences in corneal elastic modulus, stress relaxation degree and the total number of collagen fibrils between experiment and control groups varied gradually with time, and showed significant changes at the 3rd month after the treatment.
Conclusions
Corneas after a removal of anterior corneal tissue undergo dynamic changes in corneal morphology and biomechanical properties. The first 3 months after treatment could be a critical period. The variation of corneal biomechanical properties is worth considering in predicting corneal deformation after a removal of anterior corneal tissue.