Ambient-air-stable Li3InCl6 halide solid electrolyte, with high ionic conductivity of 1.49 × 10−3 S cm−1 at 25 °C, delivers essential advantages over commercial sulfide-based solid electrolyte.
This review focuses on fundamental understanding, various synthesis routes, chemical/electrochemical stability of halide-based lithium superionic conductors, and their potential applications in energy storage as well as related challenges.
Direct quantification of terrestrial biosphere responses to global change is crucial for projections of future climate change in Earth system models. Here, we synthesized ecosystem carbon-cycling data from 1,119 experiments performed over the past four decades concerning changes in temperature, precipitation, CO 2 and nitrogen across major terrestrial vegetation types of the world. Most experiments manipulated single rather than multiple global change drivers in temperate ecosystems of the USA, Europe and China. The magnitudes of warming and elevated CO 2 treatments were consistent with the ranges of future projections, whereas those of precipitation changes and nitrogen inputs often exceeded the projected ranges. Increases in global change drivers consistently accelerated, but decreased precipitation slowed down carbon-cycle processes. Nonlinear (including synergistic and antagonistic) effects among global change drivers were rare. Belowground carbon allocation responded negatively to increased precipitation and nitrogen addition and positively to decreased precipitation and elevated CO 2. The sensitivities of carbon variables to multiple global change drivers depended on the background climate and ecosystem condition, suggesting that Earth system models should be evaluated using site-specific conditions for best uses of this large dataset. Together, this synthesis underscores an urgent need to explore the interactions among multiple global change drivers in underrepresented regions such as semi-arid ecosystems, forests in the tropics and subtropics, and Arctic tundra when forecasting future terrestrial carbon-climate feedback.
The enabling of high energy density
of all-solid-state lithium
batteries (ASSLBs) requires the development of highly Li+-conductive solid-state electrolytes (SSEs) with good chemical and
electrochemical stability. Recently, halide SSEs based on different
material design principles have opened new opportunities for ASSLBs.
Here, we discovered a series of Li
x
ScCl3+x
SSEs (x = 2.5, 3, 3.5,
and 4) based on the cubic close-packed anion sublattice with room-temperature
ionic conductivities up to 3 × 10–3 S cm–1. Owing to the low eutectic temperature between LiCl
and ScCl3, Li
x
ScCl3+x
SSEs can be synthesized by a simple co-melting strategy.
Preferred orientation is observed for all the samples. The influence
of the value of x in Li
x
ScCl3+x
on the structure and Li+ diffusivity were systematically explored. With increasing x value, higher Li+, lower vacancy concentration,
and less blocking effects from Sc ions are achieved, enabling the
ability to tune the Li+ migration. The electrochemical
performance shows that Li3ScCl6 possesses a
wide electrochemical window of 0.9–4.3 V vs Li+/Li,
stable electrochemical plating/stripping of Li for over 2500 h, as
well as good compatibility with LiCoO2. LiCoO2/Li3ScCl6/In ASSLB exhibits a reversible capacity
of 104.5 mAh g–1 with good cycle life retention
for 160 cycles. The observed changes in the ionic conductivity and
tuning of the site occupations provide an additional approach toward
the design of better SSEs.
To promote the development of solid‐state batteries, polymer‐, oxide‐, and sulfide‐based solid‐state electrolytes (SSEs) have been extensively investigated. However, the disadvantages of these SSEs, such as high‐temperature sintering of oxides, air instability of sulfides, and narrow electrochemical windows of polymers electrolytes, significantly hinder their practical application. Therefore, developing SSEs that have a high ionic conductivity (>10−3 S cm−1), good air stability, wide electrochemical window, excellent electrode interface stability, low‐cost mass production is required. Herein we report a halide Li+ superionic conductor, Li3InCl6, that can be synthesized in water. Most importantly, the as‐synthesized Li3InCl6 shows a high ionic conductivity of 2.04×10−3 S cm−1 at 25 °C. Furthermore, the ionic conductivity can be recovered after dissolution in water. Combined with a LiNi0.8Co0.1Mn0.1O2 cathode, the solid‐state Li battery shows good cycling stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.