Long QT syndrome (LQTS) is characterized by prolonged QT interval, leading to sudden cardiac death. Hyperglycemia is an important risk factor for LQTS, inhibiting the cardiac rapid component delayed rectifier K+ current (Iks), responsible for QT interval. We previously showed that the new ALR2 inhibitor BF-5m supplies cardioprotection from QT prolongation induced by high glucose concentration in the medium, reducing QT interval prolongation and preserving morphology. Here we investigated the effects of BF-5m on cell cytotoxicity and viability in H9c2 cells, and on cellular potassium ion channels expression.H9c2 cells were grown in medium with high glucose and high glucose plus the BF-5m by assessing the cytotoxic effects and the cell survival rate. In addition, KCNE1 and KCNQ1 expression in plasma and mitochondrial membranes were monitored. Also, the expression levels of miR-1 proved to suppress KCNQ1 and KCNE1, were analyzed.BF-5m treatment reduced the cytotoxic effects of high glucose on H9c2 cells by increasing cell survival rate and improving H9c2 morphology. Plasmatic KCNE1 and KCNQ1 expression levels were restored by BF-5m in H9c2 exposed to high glucose, down-regulating miR-1.These results suggest that BF-5m exerts cardioprotection from high glucose in rat heart ventricle H9c2 cells exposed to high glucose.