Caenorhabditis elegans, a kind of model organism, was used to investigate biodegradation pathway of IPP and M1 in nematodes, in vivo toxicity from IPP and M1 and the possible underlying molecular mechanism. The results showed that both IPP and M1 could decrease lifespan, locomotion behavior, reproductive ability and AChE activity. During IPP biodegradation process, three intermediates (M1-M3) were monitored and identified. Based on the identified metabolites and their biodegradation courses, a possible biodegradation pathway was proposed. IPP was probably transformed to different three metabolites in nematodes through oxidation and elimination of methyl and propyl etc. Under the same concentration, IPP had more severe toxicity than M1 on nematodes. IPP and M1 might reduce lifespan and decrease reproductive ability through influencing insulin/IGF signaling pathway and TOR signaling pathway. They could decrease expression levels of daf-16, sgk-1, aak-2, daf-15 and rict-1 genes, which involved in IGF and TOR signaling pathway.