Estrogen potentiates vascular reactivity to vasopressin (VP) by enhancing constrictor prostanoid function. To determine the cellular and molecular mechanisms, the effects of estrogen on arachidonic acid metabolism and on the expression of constrictor prostanoid pathway enzymes and endoperoxide/thromboxane receptor (TP) were determined in the female rat aorta. The release of thromboxane A2 (TxA2) and prostacyclin (PGI2) was measured in male (M), intact-female (Int-F), ovariectomized-female (OvX-F), and OvX + 17beta-estradiol-replaced female (OvX + ER-F) rats. The expression of mRNA for cyclooxygenase (COX)-1, COX-2, thromboxane synthase (TxS), and TP by aortic endothelium (Endo) and vascular smooth muscle (VSM) of these four experimental groups was measured by RT-PCR. The expression of COX-1, COX-2, and TxS proteins by Endo and VSM was also estimated by immunohistochemistry (IHC). Basal release of TxA2 and PGI2 was similar in M (18.8 +/- 1.9 and 1,723 +/- 153 pg/mg ring wt/45 min, respectively) and Int-F (20.2 +/- 4.2 and 1,488 +/- 123 pg, respectively) rat aortas. VP stimulated the dose-dependent release of TxA2 and PGI2 from both male and female rat aorta. OvX markedly attenuated and ER therapy restored VP-stimulated release of TxA2 and PGI2 in female rats. No differences in COX-1 mRNA levels were detected in either Endo or VSM of the four experimental groups (P > 0.1). The expression of both COX-2 and TxS mRNA were significantly higher (P < 0.05) in both Endo and VSM of Int-F and OvX + ER-F, compared with M or OvX-F. Expression of TP mRNA was significantly higher in VSM of Int-F and OvX + ER-F compared with M or OvX-F. IHC revealed the uniform staining of COX-1 in VSM of the four experimental groups, whereas staining of COX-2 and TxS was greater in Endo and VSM of Int-F and OvX + ER-F than in OvX-F or M rats. These data reveal that estrogen enhances constrictor prostanoid function in female rat aorta by upregulating the expression of COX-2 and TxS in both Endo and VSM and by upregulating the expression of TP in VSM.