Background: Although listed in the Stockholm Convention, commercial Decabromodiphenyl ether (c-DecaBDE) is still being produced in many factories and used as a kind of flame retardants primarily in plastic polymers and textiles. Widespread use offered many exposure ways of its major ingredient, BDE-209, to humans and the environment. Most current studies of BDE-209 focused on the health effects and toxicity of thyroid disruption, oxidative stress, neurotoxicity, and reproductive function, but seldom spread light on the relationship between neurobehavioral toxicity and visual dysfunction. Using zebrafish larvae model, we hope to uncover the potential relationship between the neurobehavioral and visual effects after exposure to BDE-209.Results: BDE-209 exposure could not induce the changes of locomotion and path angle in 5 days post fertilization (dpf ) larvae; however, 5 μg/L BDE-209 exposure caused locomotor hyperactivity and more responsive turns at 7 dpf. The social activity of 50 μg/L exposure group was significantly higher than the control group at 6 dpf. Besides, 5 and 50 μg/L exposure caused the upregulation and downregulation of four cone opsin genes, respectively. The expression of rhodopsin gene was not influenced by both concentration exposures.
Conclusion:The neurobehavioral effects induced by 5 μg/L BDE-209 exposure were consistent with the upregulation of four cone opsins in 7 dpf larvae. The low concentration of BDE-209 exposure caused the hyperactivity and more responsive turns of larvae possibly contributing to the disruption on the cone opsin expressions of larvae. Our results would provide the mechanism cue of neurobehavioral toxicity after BDE-209 exposure and call for more attention on the ecotoxicology studies of BDE-209.